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Evidence is valuable because it informs decisions to produce
better outcomes. However, the same evidence that is complete
for some individuals or groups may be incomplete for others,
leading to inefficiencies in decision making and growth in dispar-
ities in outcomes. Specifically, the presence of treatment effect
heterogeneity across some measure of baseline risk, and noisy
information about such heterogeneity, can induce self-selection
into randomized clinical trials (RCTs) by patients with distribu-
tions of baseline risk different from that of the target population.
Consequently, average results from RCTs can disproportionately
affect the treatment choices of patients with different baseline
risks. Using economic models for these sequential processes of
RCT enrollment, information generation, and the resulting treat-
ment choice decisions, we show that the dynamic consequences
of such information flow and behaviors may lead to growth in
disparities in health outcomes across racial and ethnic categories.
These disparities arise due to either the differential distribution
of risk across those categories at the time RCT results are reported
or the different rate of change of baseline risk over time across
race and ethnicity, even though the distribution of risk within the
RCT matched that of the target population when the RCT was con-
ducted. We provide evidence on how these phenomena may have
contributed to the growth in racial disparity in diabetes incidence.

evidence-based medicine | health disparity | diabetes
incidence | treatment effect heterogeneity

Evidence on the comparative effectiveness of alternative treat-
ments is usually generated using randomized clinical trials

(RCTs). These trials are conducted across multiple settings,
where patients are enrolled by physicians who are the princi-
pal investigators of the studies. In some cases, there are multiple
trials that either are funded by different organizations or occur
at different points in time, with a different set of investigators
across these trials. The results from these multiple trials may
oppose or reinforce each other’s findings. In the early 1990s, the
framework of evidence-based medicine (EBM) was developed
to summarize the body of evidence on a research question and
to use that summary to be the current best evidence from clini-
cal care research in the management of individual patients. The
fact that average results from EBM do not apply to individual
patients is well known (1). However, EBM seems to suggest that
after careful curation based on exclusion and inclusion criteria
from multiple studies, if all patients in the target population were
to be treated with a given treatment, the realized population-
level outcomes would reflect those obtained in the EBM analysis
for that treatment (1–3). Many clinical societies, therefore, swear
by EBM for recommending the standard of care, for develop-
ing clinical guidelines, and for issuing directives for clinical care
in the population. Nevertheless, in practice, information about
clinical care for individual patients may additionally arise from a
variety of settings, e.g., previous smaller studies that have focused
on specific groups of patients, learning by doing in clinical prac-
tice, and social interactions. To some extent EBM results may
directly conflict with information acquired through these differ-
ent channels. In the presence of treatment effect heterogeneity,

these sequential processes of RCT enrollment with prior infor-
mation, information generation, and dissemination via EBM and
consequent treatment choice decisions have not been jointly
examined formally.

We show that, in the presence of treatment effect heterogene-
ity over some baseline measures of patient risk, the currently
accepted process of evidence generation and application may
have an unintended consequence of increasing disparities in
health outcomes across different subgroups, including racial and
ethnic categories (RECs), even when there are no disparities in
treatment choices conditional on the baseline risk. Disparities
across RECs are the main focus for this paper, but the under-
lying phenomena studied could be applied to study disparities
generally across other subgroups.

Specifically, we develop a theoretical model to study the
behavior of enrollment in RCTs, the evidence-based recommen-
dation from such RCTs, and the consequent impact on treatment
selection in practice. An overview of this information flow and
behaviors can be found in Fig. 1. Throughout this framework,
we consider the individual decision maker to be the patient–
physician dyad, referred to as the patient. Individual patients
in a target population start with some beliefs about the incre-
mental benefits of the treatment and consider whether to enroll
in an RCT designed to test a treatment compared to a control
or to use the treatment without enrolling in an RCT, should
that treatment be available outside of the RCT (Fig. 1). We
specifically focus on treatments that are already available in the
population and not on innovations being evaluated by a regu-
latory agency such as the US Food and Drug Administration
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Fig. 1. Flow of information and behaviors in clinical evidence generation and practice.

(FDA). Similar models have been used to study enrollment in
FDA trials by Philipson (4) and Malani (5).† Depending on those
who enroll, an average effect is estimated from the RCT. This
effect determines the evidence-based recommendation, which,
when popularized through EBM, updates the beliefs of all indi-
vidual patients in the population for future years. Finally, at
any given point, individual beliefs and the costs of acquiring
treatment drive decisions about getting the treatment in prac-
tice. The realized outcomes in the population are based on
these individual treatment choice decisions, shaped by EBM
recommendations.

By formalizing these processes of information flow and behav-
ior, we show that at every step where new information affects
behavior, whether in terms of RCT enrollment or treatment
selection in practice, there is a potential for the unintended con-
sequence of inducing disparities in outcomes across patients in
different RECs due to both the differences in the current distri-
bution of baseline risk across RECs and the differences in the
rate of change of baseline risk across RECs over time.

We apply this model to a case of diabetes prevention to illus-
trate how these phenomena may have contributed to the growth
of racial disparity in diabetes incidence. Specifically, our model
predicts that due to the popularization of the intensive lifestyle
modification intervention for diabetes prevention from aver-
age results of RCTs, at-risk individuals who fail to engage in
lifestyle modification due to its shadow costs do not take up
the alternative metformin therapy, which is equally effective in
high-risk patients. In addition, if the distribution of high risk
shifts at a different rate for subgroups, a natural disparity in
health outcomes will emerge across those subgroups. We show
that treatment choice behaviors in diabetes prevention are in
line with our theoretical model’s predictions. Moreover, coun-
terfactual predictions from our model suggest that shortcomings
of the current evidence generation and its application could
explain up to 10.5% of the growth in racial disparity in diabetes
incidence. We conclude by discussing ways in which such short-
comings of EBM and the RCT infrastructure, in general, can
be alleviated.

In the next sections, we develop the theoretical model for
the abovementioned sequence of behaviors and illustrate this
framework using an application of EBM for diabetes prevention.

†Both of their works use Roy’s (9) model but in cases of new technology assessments
where the treatment is not available outside the RCT and likely there is no anticipation
of heterogeneity in the absence of prior information. That makes their models special
cases of the one presented here.

A Motivating Example: Diabetes Incidence
Type 2 diabetes is one of the most prevalent chronic diseases
of our time. The Centers for Disease Control and Preven-
tion (CDC) estimates that 1 in 10 Americans have diabetes
and 1 in 3 have prediabetes, i.e., risk of developing diabetes.
However, a majority of prediabetics are unaware of their pre-
diabetic status. Based on over two decades of research, the
CDC-led National Diabetes Prevention Program (NDPP), which
is a partnership of public and private organizations working
to prevent or delay type 2 diabetes, helps individuals make
lifestyle changes to prevent or delay type 2 diabetes and other
serious health problems. A key component of the NDPP is a
lifestyle change program that helps people lose 5 to 7% of their
body weight through healthier eating and 150 min of physical
activity of moderate intensity per week, such as brisk walk-
ing. This program and its guidelines are rooted in results from
rigorously conducted randomized clinical trials, published in
2002, demonstrating that people with prediabetes who take part
in a structured lifestyle change program could cut their risk
of developing type 2 diabetes by 58% (71% for people over
60 y old) (6).

Diabetes incidence had been rising (+4.7% annual percent-
age change, P value < 0.001) in the United States over last
two decades until 2008 (7). Since 2008, there has been a
decrease in such incidence (−5.4% annual percentage change,
P value = 0.09) (7). Efforts continue to reduce type 2 diabetes
through the NDDP lifestyle change intervention, which includes
targeted screening, as well as population approaches to improve
healthy food availability, diabetes awareness, and education and
walkability of communities (8).

However, while the trends in diabetes incidence for non-
Hispanic Whites were roughly similar to the overall trends
showing a decline in incidence since 2008, there were no
such declines for both non-Hispanic Blacks and Hispanics.
The increase in diabetes incidence continued unabated among
these two subgroups through 2012, thereby widening the health
disparities from about 3/1,000 pre-2008 to 7/1,000 by 2012
(Fig. 2).

There can be competing explanations for this increase in
health disparity. It is possible that the DPP program was not
effective in these two subgroups and/or, even if the program was
effective, its uptake remained compromised in these subgroups,
compared to Whites. It is also possible that the EBM approach
that led to the guided program misapplied information from the
RCTs, resulting in suboptimal outcomes in some subgroups com-
pared to others. Exploring this latter channel is the focus of this
paper.
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Fig. 2. Diabetes incidence 1997 to 2012 by race. Data from ref. 7.

A Theoretical Model for Evidence Generation and Disparities
Consider θ to be a scalar risk, representing a set of factors over
which the “true” treatment effects (e) vary; i.e., ei = e(θi) rep-
resents the conditional benefits function and i represents an
individual. Note that here, θ is a heterogeneity parameter, which
has a distribution in the population, although for an individual
patient, it has a deterministic value (similar to age). Without
loss of generality, let θ∈<, E(θ) = 0, and e(θ)∼N (µe(θ),σ2

e ),
where

µe(θ) =α1 +α2θ, [1]

and α1,α2 ∈<. Therefore, the true population average treat-
ment effect parameter is α1.

Let the perception about the incremental benefits of treatment
be given by r(θ), where

r(θi) = e(θi) + εi , [2]

where εi ∼N (0,σ2
r ). This signifies that although, on average,

perceptions align with true benefits, there could be substan-
tial noise for any given individual. One may allow σ2

r to vary
with θ. However, there is no expected direction for ∂σ2

r
∂θ

.‡ Since
including such nuance can distract from the main message that
even under basic circumstances, enrollment in RCT can be sys-
tematic, we do not consider heteroscedasticity for the sake of
simplicity. Therefore, Eq. 2 represents a classical measurement
error problem in the perception of benefits from treatment,
which can form from previous studies, from learning by doing in
practice, and also from social interactions. The implications for
relaxing the dependence between r(θ) and e(θ) are considered
below.

At this point, let patients face a choice of enrolling in an RCT
or seeking treatment outside of an RCT (denoted by “OUT”).
Let the costs (incremental to the corresponding control interven-
tion) of obtaining the treatment be given as Cij = cj +mj (θi),
where j = RCT or OUT. cj represents demand prices for treat-
ment and mj represents the shadow costs of getting access to the

‡That is, subgroups at high risk may have smaller or larger variation in beliefs. If het-
eroscedasticity increases with θ, and so do expected benefits, then the relative direction
for enrollment into an RCT, as evident below, remains undetermined. This is because
expected higher benefits make patients less likely to enroll, while higher uncertainty
makes patients more likely to enroll.

treatment, e.g., travel time, treatment time, etc.§ For the sake of
simplicity, cost components are not considered to be stochastic.
Shadow costs are assumed to vary with θ.

Next, consider three behaviors corresponding to one cycle of
information flow, shown in Fig. 1, which would be represented
using a two-time-period model. In the first period, patients have
the choice to enroll in an RCT, which produces results that are
then applied as treatment guidance. In the second period, the
patient makes treatment selection based on the patient’s updated
perceptions of treatment benefits.

Enrollment in an RCT. Following a standard Roy’s (9) model on
sorting behavior, let Si , an indicator for an individual enrolling
in an RCT, be given by

Si = I (U ∗i ≥ 0), [3]

where U ∗i is the patient’s latent net utility for enrolling, which is
expressed as

U ∗i = [πR
∗r(θi)−CiRCT(θ)]− [r(θi)−CiOUT(θ)], [4]

and πR is the known random probability of receiving treat-
ment within the RCT (and 1−πR is the probability of being
assigned to the control group). Given that no individual with neg-
ative perceived benefits of treatment will enroll in the RCT, the
probability π of enrolling in the RCT is given as

π(θ) =Pr

(
r(θ)≤ COUT(θ)−CRCT(θ)

1−πR

)
= Φ(h(θ)), [5]

where Φ()is a cumulative standard Gaussian distribution and

h(θ) =

(cOUT−cRCT)+(mOUT(θ)−mRCT(θ))
−(1−πR)(α1+α2θ)

(1−πR)
√
σ2
e +σ2

r

. [6]

The above implies that only those individuals whose positive per-
ceived benefits are less than the weighted incremental costs of
accessing the treatment outside the RCT will enroll in the RCT
(10). The probability of enrolling in the RCT will depend on
the true benefit parameters, differential costs, and the noise in
perceived benefits. More importantly, as θ increases, the prob-
ability of enrolling into the RCT will decrease if the difference
in the shadow costs of accessing treatment outside versus inside
the RCT decreases with θ. This is possible when individuals who
would have benefited the most from treatment find it more dif-
ficult than others to enroll in the RCT due to access and other
issues. The probability will also decrease if the true benefits of
treatment increase faster than the difference in costs of access-
ing treatment outside versus inside the RCT over θ. This is often
the case when the treatment in question is already available
outside the RCT and also is covered through insurance. Con-
sequently, individuals who anticipate higher benefits, even with
the additional noise, are less likely to enroll in the RCT.

It should be noted that even if there was no system-
atic anticipation of benefits, i.e., Eq. 2 was r(θi) = εi , and
Corr(r(θ), e(θ)) = 0, enrollment probability in the RCT may
still vary over θ, but only through the differential shadow costs
of obtaining treatment inside versus outside the RCT.

Finally, we have assumed πR to be constant and known a pri-
ori. Eq. 5 suggests that as long as πR < 1, perceived benefits
would still influence treatment selection. Some adaptive designs
for RCTs do allow πR to vary over time and risk groups. To
what extent such designs can be used to over/undersample and
fix distortions in enrollments remains to be studied.

§ It is assumed that the cost of accessing the placebo or the control group within or
outside the RCT is the same.
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Average Treatment Effect Parameter in an RCT and Its Populariza-
tion through EBM. While the population average treatment effect
(ATE) parameter, following Eq. 1, is given as

ATEPOP =

∫
e(θ)dF (θ) =E(e(θ)) =α1 +α2E(θ) =α1, [7]

the average treatment effect parameter for the RCT is given by

ATERCT =

∫ 1

0

π(θ)e(θ)

π̄(θ)
dF (θ)

=α1 +
COV (π(θ), e(θ))

π̄(θ)
,

[8]

where π̄(θ) =E(π(θ)) =E(Φ(h(θ))). In other words, the enroll-
ment probabilities will weight the conditional benefits function to
define the target parameter for the RCT. When there is no corre-
lation between the probability of enrollment and the true bene-
fits (COV (π(θ), e(θ)) = 0), ATERCT = ATEPOP. In cases where
individuals who would truly realize higher benefits of treatment
are less likely to enroll in the trial, i.e., COV (π(θ), e(θ))< 0,
ATERCT <ATEPOP and vice versa (10).

One should note that the average effect conditional on θ
within an RCT, even with nonrandom selection, is a consistent
estimator of the true conditional population average effect; i.e.,
E(ATERCT(θ)) = e(θ). Once these conditional effects are esti-
mated, they can be reweighted using the population distribution
of θ to recover mean population-level treatment effect parame-
ters. However, most, if not all, trials do not attempt to establish
such nuanced risk-based distribution of treatment effects. Some
large RCTs carry out subgroup analyses to assess the heterogene-
ity of treatment effects. It is clear from Eq. 8 that any average
estimator over any restricted support of the distribution of θ will
have the same issues as ATERCT.

Let the estimated effect from the RCT be given as ȳ ∼
N (ATERCT, s2

ȳ ). EBM would popularize this estimated aver-
age effect from the RCT, which would impact the beliefs of
individuals in the population. Denoting original (first-period)
and updated (second-period) beliefs with subscripts “0” and
“t,” respectively, updated beliefs following EBM recommenda-
tions, assuming a standard Bayesian updating with Gaussian
conjugates, are given as

rt(θ) =wr0(θ) + (1−w)ȳ , [9]

where rt(θ)∼N (µrt (θ),σ
2
rt ) and

µrt (θ) =w(α1 +α2θ) + (1−w)ATERCT [10]

and
σ2
rt =wσ2

r0 , [11]

where w = s2
ȳ /(s

2
ȳ +nσ2

r0) is the evidence weight of prior beliefs
compared to RCT, with n being the sample size of the RCT.
Even when the RCT provides a consistent estimator for the
population-level average treatment effect but provides no evi-
dence on heterogeneity, the application of the average RCT
result through EBM has an attenuation effect w on the perceived
treatment benefit heterogeneity over θ.

Implications for Disparities Based on Updated Beliefs, Treatment
Selection, and Realized Outcomes. A comparison of how realized
outcomes in the population, resulting from clinical practice,
would differ from those in an idealized world can be made by
comparing treatment choices patients make based on updated
beliefs and the variance in their beliefs, given in Eq. 10, with
those they would have made if e(θ) were known. A formal

representation of the discussion that follows is provided in SI
Appendix. In this section, we provide an intuition for how these
differences between the idealized world and the case of clini-
cal practice may generate disparities in health outcomes across
subgroups.

In the idealized world, the probability of treatment choice,
i.e., Pr((ei(θ)−CiOUT(θ))> 0), increases with θ as long as the
costs of accessing the treatment are not rising at a faster rate
than the benefits with respect to θ (i.e., α2>

∂mOUT(θ)
∂θ

). Treat-
ment selection in clinical practice, however, will be driven by the
updated beliefs about the effect of treatment following EBM.
In this setting, the probability of treatment choice will be given
by Pr((rt(θi)−CiOUT(θ))> 0). Compared to the ideal setting,
since w < 1 and the perceived benefits get shrunken toward
the ATERCT, the probability of treatment selection in practice
will diverge from the ideal setting and more so at higher val-
ues of θ. This holds true with or without self-selection into the
RCT. With self-selection, especially when individuals who would
truly realize benefits of treatment are less likely to enroll in the
trial (COV (π(θ), e(θ))< 0), the sensitivity (of the divergence of
treatment selection in practice vs. ideal) to θ becomes amplified.
This is not to say that the RCT was not valuable since we do not
know the nature of treatment selection pre-RCT. Nonetheless, it
shows how the average effect from RCTs accentuates the deci-
sion errors in practice compared to the ideal setting, especially
for individuals with high values of θ.

It is important to note here that, conditional on θ, our model
has no implications for disparities in treatment choices. It is true
that the shadow price of obtaining care may differ across sub-
groups, independent of θ. However, that is not the main premise
of our analysis. In our model, even when the shadow prices are
the same across subgroups, the differences in the consequent
realized outcomes between the idealized and clinical practice set-
tings would depend on θ because of the universal inefficiency
of treatment choices at specific θ levels induced by the aver-
age results. The direction or nature of this dependence would
vary based on the relative magnitudes of the Corr(e(θ), rt(θ)),
w , and on the sign of α2. The key point here is that the dif-
ference between realized benefits and ideal benefits decreases
(or increases) with θ and could become negative (or more pos-
itive) at higher values of θ. This intuition captures the main
implication of our current evidence production and application
infrastructure for disparities. It says that any two subgroups of
patients with a different distribution of θ will, on average, expe-
rience different levels of realized outcomes compared to ideal
outcomes, potentially giving rise to the growth in disparities
in outcomes. These implications hold even when the RCT was
representative of the contemporaneous distribution of θ in the
population (i.e., E(ȳ) =α1) ) or when patients did not antici-
pate the directions of treatment effect heterogeneity over θ (i.e.,
ρ= 0). Differences in the distribution of θ and also a differential
shift in those distributions over time across subgroups will still
induce disparities in outcomes.

In the next section, we provide empirical evidence illustrating
how these mechanisms may have given rise to observed racial
disparity in outcomes.

Evidence-Based Medicine on Diabetes Incidence and
Disparities
As mentioned earlier, the NDPP and its specific guidelines,
including the key lifestyle change program, stem from rigorously
conducted randomized clinical trials, published in 2002, which
we now discuss in the context of the EBM approach.

Diabetes Prevention Program Trial, Results, Guidelines, and Treat-
ment Effect Heterogeneity. The Diabetes Prevention Program
(DPP) was a three-arm randomized clinical trial testing strate-
gies for preventing or delaying the development of type 2
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diabetes in high-risk individuals with elevated fasting plasma
glucose (FPG) concentrations and impaired glucose tolerance
(IGT). Patients were randomly assigned to one of three inter-
vention groups: 1) standard lifestyle recommendations plus
metformin (dose of 850 mg twice daily), 2) standard lifestyle
recommendations plus placebo (twice daily), or 3) an intensive
program of lifestyle modification focusing on a healthy diet and
exercise.

The DPP trial aimed to recruit a large and diverse cohort of
individuals at high risk for developing type 2 diabetes. It focused
on recruiting obese individuals from a wide range of age groups
and racial backgrounds. The DPP included 27 clinical centers
in the United States that began the recruitment process in June
1996 with a randomization goal of 3,000 participants (12). To a
large extent, the DPP remains a gold standard trial among large
RCTs in the United States.

The DPP trial results were published in 2002, demonstrat-
ing a reduction in diabetes incidence of 58% using the lifestyle
intervention and a reduction of 31% using metformin, com-
pared to placebo (6). These effects were similar across gender
and across racial/ethnic backgrounds. Given that the DPP trial
was conducted with a diverse and multiracial cohort, the study
emphasized the applicability of their findings “to the ethnically
and culturally diverse population of the United States” (ref. 6,
p. 6). In 2003, the United States Preventive Services Task Force
(13) assigned intensive lifestyle weight-loss interventions a B
grade based on a review of the literature, with fair to good evi-
dence for modest, sustained weight loss. Specifically, the DPP
clinical guidelines stated “lifestyle modification was nearly twice
as effective (compared to metformin) in preventing diabetes
(58 vs. 31% relative reductions, respectively)” (ref. 14, p. S65).
Clinical guidelines also highlighted some subgroup-level het-
erogeneity, stating “[i]n the DPP, metformin was about half as
effective as diet and exercise in delaying the onset of diabetes
overall, but it was nearly ineffective in older individuals (≥ 60 y
of age) or in those who were less overweight (BMI< 30kg/m2)”
(ref. 14, p. S66). Conversely, metformin was as effective as
lifestyle modification in individuals age 24 to 44 y or in those
with a body mass index (BMI) ≥ 35 kg/m2.

In the interest of pursuing more efficient, effective, and
patient-centered outcomes, Sussman et al. (11) analyzed 95%
of the DPP trial data to test whether participants in the DPP
trial varied in their likelihood of receiving benefits from met-
formin or the lifestyle intervention. They divided up the trial
populations into quarters, depending on patients’ preinterven-
tion risk levels. Their analysis showed that patients with a
high risk of diabetes varied substantially in their likelihood of
benefiting from the DPP’s treatments, depending on their lev-
els of baseline risk (Fig. 3). The lifestyle intervention was six
times more effective in reducing absolute risk for patients in
the highest-risk quarter, compared to those in the lowest-risk
quarter, while still being beneficial for patients in the lowest-
risk quarter. However, the beneficial effects of metformin were
found to be concentrated entirely in the high-risk quarter (an
enormous effect of 25% reduction in absolute risk, which was
not statistically different from the effect of lifestyle interven-
tion), but there were no benefits from metformin use in the
lowest-risk quarter.

Enrollment in the DPP Trial. We first examine the generalizability
of the DPP trial to the target population using Sussman et al.’s
(11) construct of patients’ preintervention risk levels. To iden-
tify the prediabetic US population, i.e., the population at risk for
progression to diabetes, we use nationally representative data
from the National Health and Nutrition Examination Survey
(NHANES) 2005 to 2012 (i.e., four cross-sectional and consec-
utive 2-y survey cycles). Since IGT and FPG levels were primary
risk factors for identifying the target population and these mea-

Fig. 3. Reanalysis of treatment effect heterogeneity in the DPP RCT with
respect to continuous baseline risk. Data from ref. 11.

surements were available only starting in 2005, we are unable to
examine data prior to 2005. For the DPP trial data used in our
analysis, we rely on estimates provided in Kent et al. (15) and
Sussman et al. (11).

We construct baseline risk distributions for the at-risk pop-
ulation by using the inclusion and exclusion criteria applied in
the DPP study (16). We include patients comparable to those
in the DPP trial, applying the same age and BMI criteria.
We consider patients to be prediabetic if they had IGT, ele-
vated FPG, or self-reported prediabetes. Details of the inclusion
and exclusion criteria applied are presented in SI Appendix,
Tables S1 and S2. The application of these criteria results in
an at-risk population consisting of the at-risk population we
analyzed consists of 2,108 people, which is representative of
22,540,205 nationally (i.e., 7.5% of the US population, 2005
to 2012).

The population risk distributions by race for each 2-y survey
cycle over the quartiles of the risk distribution of the DPP trial
are presented in Fig. 4. A formal test for the equality of the risk
distribution by race over these four categories was conducted
using Fisher’s exact test, which shows significant differences for
each 2-y cycle. Next, note that during 2005 to 2006, the popula-
tion risk distribution for each race seems to be similar to that of
the DPP. That is, within each DPP risk quartile (which by defini-
tion includes 25% of the DPP trial participants), the proportion
of population within each racial category is also 0.25. Note fur-
ther that such relative similarity in risk distribution across race
changes after the 2005 to 2006 period. Racial minority groups
are more likely to be in the highest DPP risk category each
year, compared to non-Hispanic Whites. For example, by 2007
to 2008, over 40% of Hispanics are in the highest-risk cate-
gory compared to about 25% for both non-Hispanic Whites and
Blacks. By 2011 to 2012, over 40% of non-Hispanic Blacks and
over 35% of Hispanics were in the highest-risk category, com-
pared to only 30% of non-Hispanic Whites. It is evident that
over time, non-Hispanic Blacks and Hispanics have a higher
concentration of prediabetes patients in the high-risk quartile,
where the effectiveness of lifestyle over metformin appears low-
est (Fig. 3). Based on insights developed in Enrollment in an RTC
and Average Treatment Effect Parameter in an RCT and Its Popu-
larization through EBM, over time, the ATE from the DPP trial
does not accurately reflect ATE for non-Hispanic Blacks and
Hispanics.
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Fig. 4. Baseline risk for diabetes in the US target population (NHANES 2005 to 2012) across quartiles of risk score in the DPP trial.

Implications of Theoretical Models for Treatment Uptake and Dis-
parity in This Example. There are two sets of treatment compar-
isons in the DPP: 1) lifestyle modification (treatment) versus
metformin (control) and 2) metformin (treatment) versus
placebo (control). θ represents the baseline risk of developing
diabetes. Since the risk distributions in the DPP and in the
2005 target population looked similar, we assume the follow-
ing: 1) Before the DPP, patients did not have any anticipation
of the directions of treatment effect heterogeneity over θ for
any of the comparisons (i.e., Corr(r0(θ), e(θ)) = 0 for either
comparison). 2) The demand price and shadow prices of treat-
ments were the same inside and outside the DPP (i.e., cOUT(θ) =
cDPP(θ) and mOUT(θ) =mDPP(θ) for both lifestyle intervention
and metformin).

These two assumptions taken together imply, according to
Eq. 5, that π(θ) =π ∀θ. Consequently, COV (π(θ), e(θ)) = 0,
and according to Eq. 8, ATERCT =α1. Therefore, the aver-
age effect from the DPP, for either comparison, will be a
consistent estimator of the true population average treatment
effect. This result would also imply, according to Eq. 9, that
Corr(e(θ), rt(θ)) = ρ = 0.

In addition, we assume that the incremental shadow costs of
treatment versus control in either comparison are positive, and
these incremental shadow costs do not decrease with respect to θ.
(i.e., ∂mOUT(θ)

∂θ
≥ 0). This is reasonable as it is generally expected

that patients who are at higher risk of developing diabetes, due
to social, environmental, and medical reasons, are also more
likely to face steeper shadow costs of spending more time exer-

cising while facing the same costs for generic metformin. Finally,
treatment effect heterogeneity results from the DPP (Fig. 3) sug-
gest the following: 1) The effect of lifestyle modification over
metformin is positive on average (i.e., α1 > 0) but decreases
over θ (i.e., α2 < 0). 2) The effect of metformin over placebo is
also positive on average (i.e., α1 > 0) but increases over θ (i.e.,
α2 > 0).

Based on the directions of α1 and α2 in each comparison,
we would expect that, in the ideal setting, the probability of
engaging in lifestyle intervention should decrease over θ, since
metformin is an equally effective treatment at higher values of
θ with lower shadow costs. Similarly, the probability of using
metformin should commensurately increase over θ.

However, in practice, with the DPP average results, perceived
benefits will be

µrt (θ) =α1 +wα2θ, [12]

which, when compared to perceived benefits under the idealized
environment, and assuming that the DPP was large enough so
that

√
wσ2

r0 ∼σe , would lead us to expect that the probability
of engagement in lifestyle intervention would be higher at each
level of θ compared to the ideal setting (as α2 < 0), and this
difference would increase with θ. In contrast, we would expect
that the probability of using metformin would be lower at each
level of θ compared to the ideal setting (as α2 > 0), and again
this difference would increase with θ. The empirical question
that remains is whether or not the inefficiently excess use of
lifestyle intervention will be sufficient to offset the inefficiently
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inadequate use of metformin at higher levels of θ, purely from
the perspective of preventing diabetes.

Studies have shown that metformin use and lifestyle mod-
ification are low among Americans with prediabetes (11).
Implementation difficulties affecting low usage of the DPP’s
lifestyle treatment include the financial and organizational bur-
den of designing such a large-scale lifestyle modification pro-
gram. A significant barrier to large-scale adoption is the feasibil-
ity of translating intensive lifestyle intervention into real-world
settings. The DPP lifestyle intervention cost US $2,780 per per-
son over 3 y and required 135 visit hours (17). Although the
monetary cost for the lifestyle intervention group was not sig-
nificantly higher than that for the metformin group, the visit
time was 3.5 times higher. The amount of visit time for lifestyle
intervention is high relative to that for most services available
in the current healthcare environment. This suggests that the
shadow costs of using lifestyle intervention are higher compared
to using metformin. More importantly, it alludes to the fact,
although we do not have direct evidence to show, that the shadow
costs for lifestyle intervention may be rising much faster over
baseline risk than the shadow costs for metformin. It can be
argued that if ∂mOUT(θ)

∂θ
for lifestyle intervention > ∂mOUT(θ)

∂θ
for metformin, then the use of lifestyle intervention may decrease
over (θ) and we would not see a commensurate increase in
the use of metformin in these patients, leading to higher
than expected incidence of diabetes in patients with higher
values of θ.

The implication of these results for disparities is straightfor-
ward. As long as two subgroups have different mass at higher
values of θ at any point in time, we would expect the incidence of
diabetes to be different in those two subgroups.

Empirical Uptake of Treatments Following DPP. We now examine
the empirical uptake of treatments (adjusted for age and gen-
der) following the DPP, given the theoretical insights regarding
uptake discussed in the previous section. Fig. 5A shows the
percentage of the at-risk population engaging in moderate or
vigorous physical activity by race for the period 2005 to 2012,
which is meant to proxy for the DPP trial’s lifestyle modifi-
cation treatment. The rates of physical activity by risk score
appear to be decreasing at a swift rate, and this decline appears

to be similar among all races (Fig. 6A). This decline is consis-
tent with the expectations based on our theoretical model (Eq.
12), which, recall, also suggests that this decline is conservative
in comparison to what would have happened in an idealis-
tic setting where a much steeper decline would be expected.
Nonetheless, we observe a decline in the rate of use from about
60% at the lowest level of risk to about 35% at the highest
risk where this rate could be reliably measured (i.e., sample
size >30).

In comparison, the rate of metformin use in the time period
2005 to 2012, illustrated in Fig. 5B, appears to be low but
rises over baseline risk, as expected in our theoretical model.
Recall again that according to our theoretical model, this rise is
expected to be conservative in clinical practice, compared to the
ideal setting, where many more individuals would have used met-
formin as baseline risk increases. In fact, as conjectured above,
the rise in metformin use over baseline risk comes nowhere close
to bridging the decline in lifestyle intervention over baseline risk.
Many social determinants of health plausibly influence treatment
choices. The clinical baseline risk calculated in our case study
depends on some of their proxies, such as history of high blood
glucose, parental history of diabetes, height, and BMI. Naturally,
we do see that the rates of treatment use rates vary over this base-
line risk. Nevertheless, the fact that, after adjusting for age and
gender, levels of treatment use do not vary across race (Fig. 6)
within any baseline risk category indicates the role of other fac-
tors influencing treatment choices is considerably mitigated, at
least in the current example.

The population rate of treatment use for each racial cate-
gory can be obtained by integrating the risk-specific rates and
outcomes over the respective distribution of θ. Since we have
seen that over time non-Hispanic Blacks and Hispanics have
larger densities of high θ values, one can predict that treatment
choices, especially use of moderate/vigorous exercise, would
decline more for non-Hispanic Blacks and Hispanics compared
to Non-Hispanic Whites. But our model does not make any
prediction about the implications for disparities in treatment
choices. Indeed, when we look at the empirical data, we do
see that use of moderate/vigorous exercise declines faster in
non-Hispanic Blacks and Hispanics compared to non-Hispanic
Whites from 2005 to 2007, with no concomitant differential
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Fig. 5. (A and B) Use of (A) moderate/vigorous physical activity and (B) metformin by risk score, 2005 to 2012.
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Fig. 6. (A and B) Use of (A) moderate/vigorous physical activity and (B) metformin by risk score and race, 2005 to 2012.

increases in the use of metformin (Fig. 7). Ironically, treatment
disparities have declined as a result.

Implications for DPP Results for Disparities in Diabetes. Our model
does make unambiguous predictions about the growth in dispari-
ties in realized outcomes across the racial categories. To summa-
rize the role of the production and use of evidence in the context
of the DPP and diabetes incidence, three main points arise: 1)
The DPP trial likely enrolled a representative sample of the tar-
get population. However, over time, the distribution of baseline
risk in the DPP trial no longer remained representative of the tar-
get population. This phenomenon particularly affected Hispanics
and Blacks. 2) Average results from the DPP trial placed uniform
emphasis on the superiority of lifestyle modification over met-
formin across all risk groups, even though metformin performed
statistically similar to lifestyle modification in the higher quartile
of the DPP risk distribution. 3) The shadow costs of lifestyle modi-
fication are higher than the shadow costs of taking metformin, and
these differential shadow costs between the two treatments might
be increasing over the baseline risk.

These observations demonstrate that the inadequate uptake
of metformin for individuals at higher risk affected Hispanics
and Blacks more due to the higher concentration of high risk
in these groups compared to the non-Hispanic Whites. A back-
of-the-envelope calculation reveals that had metformin increase
in the higher-risk group been commensurate with the reduc-
tion of lifestyle intervention that is observed, then the potential
reduction in disparity growth would have been¶

Reduction in disparity =Pr(At risk of prediabetes)×
Incremental Pr(4th quartile risk) for minorities× Increase in
metformin use to compensate reduction in exercise at high
risk×Absolute Risk Reduction for Metformin×
1,000 = 0.075× 0.085× 0.30× 0.22× 1,000 = 0.420.

¶Incremental Pr(fourth-quartile risk) for minorities: weighted average difference post-
2005 from Fig. 4. Increase in metformin use to compensate reduction in vigorous
exercise at high risk: from Fig. 5. Absolute risk reduction for metformin: from Fig. 3.
The diabetes disparity, 7 − 3 = 4 (per 1,000 persons per year) is given by Fig. 2.

In other words, a targeted evidence generation and application in
decision making could have decreased disparity growth by 10.5%
(= 0.420/(7 − 3)). The most uncertain parameter in this calcu-
lation is the increase in metformin use to compensate reduction
in vigorous exercise at high risk. There is uncertainty related to
how the at-risk population would have responded to EBM if the
EBM promoted risk-based treatment effects from the DPP. This
remains to be an important area of future work.

Discussion
The effects of interventions and treatments are likely to be het-
erogeneous across patients because of how treatment exposures
interact with patients’ biologies and social environments. The
current notion of evidence production for the effectiveness of
treatments is stuck in the population-average context, i.e., what
works best, on average, in a sample of patients. The implications of
heterogeneous treatment effect most commonly discussed involve
evaluating how representative the study sample is compared to
the target population and how relevant the average result is to an
individual patient choosing treatment. However, when these con-
cerns are protracted over time, where a once representative study
sample no longer remains representative of the target population
as the underlying risk distribution changes, and as the individ-
ual’s decision making is even more affected by relying on average
results from a nonrepresentative sample, we fail to achieve the
best health outcomes possible. To the extent that these phenom-
ena affect different subgroups, such as race or socioeconomic
status disproportionately, health disparities can grow over time.

The diabetes example highlights why we should think about
moving toward some form of risk-based assessments of com-
parative effectiveness in our evidence generation infrastructure
to facilitate decision making, not just at the completion of a
research study but also to make sure that the results remain
relevant over time. The diabetes example gives a conservative
estimate on the effect on disparities, given the DPP was such
a large trial and provided an adequate representation of the
population distribution at the time of recruitment. For smaller
nonrepresentative RCTs, growth in disparities may precipitate
even earlier when following results of those trials.

We note here some limitations of our diabetes example. First,
we use self-reports of moderate/vigorous exercise as a proxy for
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Fig. 7. (A and B) Use of (A) moderate/vigorous physical activity and (B) metformin by race over time.

intensive lifestyle modification intervention in the DPP. We do
not know of any data that track the use of such an interven-
tion nationally. However, the lifestyle intervention was designed
as an intensive program with goals to achieve and maintain a
weight reduction of at least 7% of initial body weight through a
healthy low-calorie, low-fat diet and to engage in physical activity
of moderate intensity, such as brisk walking, for at least 150 min
per week. We use moderate/vigorous exercise as a proxy for the
lifestyle intervention, recognizing that the shadow costs of engag-
ing in such activities would be similar to or less than the shadow
costs of engaging in the lifestyle intervention in its true form.

Second, we do not fully consider the dynamic effects of treat-
ment selection in one period on the risk distribution of the at-risk
population in the next period. In the case of diabetes, not choos-
ing to use any of the risk-reducing treatments would have an
ambiguous effect on the risk distribution of the remaining at-risk
population in the next period. This is because, with no treatment,
many currently high-risk individuals will develop diabetes and
thereby move out of the at-risk pool for the next period. Simi-
larly, with no treatment, many low- to moderate-risk individuals
can move up to become high-risk individuals in the next period.
However, this remains an area of active investigation, both in
diabetes and in the theoretical development of such dynamics.

A key approach to resolving such a problem is to be able
to develop prediction algorithms for individual-level treatment
effect heterogeneity (18). Such algorithms can be constructed
without identifying low-dimensional individualized character-
istics such as genomic information, but rather by collapsing
multi(high)-dimensional outcomes and behavior into individual-
level latent characteristics, which can be used to establish
individualized treatment effects. These prediction algorithms
can be viewed as a hypothesis generation exercise at the

individual level. However, these algorithms have two extremely
useful implications for comparative effectiveness research. First,
any attempt to individualize care based on prediction algorithms
must begin with a hypothesis generation exercise, and therefore
these results can provide valuable resources to clinicians and pol-
icymakers, who, in the absence of such resources, must rely on
traditional comparative effectiveness results based on averages.
The necessity of an algorithmic approach lies in the feasibility
of translating enormous amounts of information to the bedside,
without overwhelming physicians. Second, such individualized
treatment effects will provide critical input to any confirma-
tory randomized trial evaluating and improving such prediction
algorithms. Only by aligning the practical decision-making chal-
lenges to that of the evidence generation can it be ensured
that we are obtaining the most out of scientific transnational
research. Recently, a joint statement to promote the conduct of,
and provide guidance for, predictive analyses of heterogeneity of
treatment effects (HTE) in clinical trials has been proposed (19).
We hope that future work will stress the importance of develop-
ing research designs, methods, and EBM frameworks, keeping
these issues in mind.

Data Availability. Data used for the empirical analysis in diabetes
are based on original and derived variables from the NHANES
datasets. Original data can be found at https://www.cdc.gov/
nchs/nhanes/index.htm. The analytical Stata dataset and a vari-
able dictionary are available at the Open Science Framework:
https://osf.io/gr29s/files/.
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